Amino acid receptor-mediated transmission at primary afferent synapses in rat spinal cord.

نویسندگان

  • T M Jessell
  • K Yoshioka
  • C E Jahr
چکیده

Intracellular recording techniques have been used to provide information on the identity of excitatory transmitters released at synapses formed between dorsal root ganglion (DRG) and spinal cord neurones in two in vitro preparations. Explants of embryonic rat DRG were added to dissociated cultures of embryonic dorsal horn neurones and synaptic potentials recorded intracellularly from dorsal horn neurones after DRG explant stimulation. More than 80% of dorsal horn neurones received at least one fast, DRG-evoked, monosynaptic input. In the presence of high divalent cation concentrations (5 mmol l-1 Ca2+, 3 mmol l-1 Mg2+) the acidic amino acid receptor agonists, L-glutamate, kainate (KA) and quisqualate (QUIS) excited all dorsal horn neurones which received a monosynaptic DRG neurone input, whereas L-aspartate and N-methyl-D-aspartate (NMDA) had little or no action. 2-Amino-5-phosphonovalerate (APV), a selective NMDA receptor antagonist, was relatively ineffective at antagonizing DRG-evoked synaptic potentials and L-glutamate-evoked responses. In contrast, kynurenate was found to be a potent antagonist of amino acid-evoked responses and of synaptic transmission at all DRG-dorsal horn synapses examined. The blockade of synaptic transmission by kynurenate appeared to result from a postsynaptic action on dorsal horn neurones. Intracellular recordings from motoneurones in new-born rat spinal cord were used to study the sensitivity of the Ia excitatory postsynaptic potential (EPSP) to antagonists of excitatory amino acids. Superfusion of the spinal cord with APV did not inhibit the Ia EPSP but did suppress later, polysynaptic components of the afferent-evoked response. Kynurenate was a potent and selective inhibitor of the Ia EPSP, acting via a postsynaptic mechanism. These findings indicate that L-glutamate, or a glutamate-like compound, but not L-aspartate, is likely to be the predominant excitatory transmitter that mediates fast excitatory postsynaptic potentials at primary afferent synapses with both dorsal horn neurones and motoneurones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic enhancement of glutamate-mediated responses by serotonin and forskolin in adult mouse spinal dorsal horn neurons.

Glutamate is the major excitatory amino acid neurotransmitter in the CNS, including the neocortex, hippocampus, and spinal cord. Normal synaptic transmission is mainly mediated by glutamate AMPA and/or kainate receptors. Glutamate N-methyl-D-aspartate (NMDA) receptors are normally inactive and only activated when a sufficient postsynaptic depolarization is induced by the activity. Here we show ...

متن کامل

Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord.

Synaptic transmission between dorsal root afferents and neurons in the superficial laminae of the spinal dorsal horn (laminae I-III) was examined by intracellular recording in a transverse slice preparation of rat spinal cord. Brief high-frequency electrical stimulation (300 pulses at 100 Hz) of primary afferent fibers produced a long-term potentiation (LTP) or a long-term depression (LTD) of f...

متن کامل

A P2X receptor-mediated nociceptive afferent pathway to lamina I of the spinal cord

Of the six lamina regions in the dorsal horn of the spinal cord, lamina I is a major sensory region involved in nociceptive transmission under both physiological and pathological conditions. While P2X receptors have been shown to be involved in nociception, it remains unknown if P2X receptors are involved in nociceptive transmission to lamina I neurons. Using rat spinal cord slice preparations ...

متن کامل

Low-frequency stimulation of afferent Adelta-fibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat.

Impulses in primary afferent nerve fibers may produce short- or long-lasting modifications in spinal nociception. Here we have identified a robust long-term depression (LTD) of synaptic transmission in substantia gelatinosa neurons that can be induced by low-frequency stimulation of primary afferent Adelta-fibers. Synaptic transmission between dorsal root afferents and neurons in the substantia...

متن کامل

Low-Frequency Stimulation of Afferent Ad-Fibers Induces Long- Term Depression at Primary Afferent Synapses with Substantia Gelatinosa Neurons in the Rat

Impulses in primary afferent nerve fibers may produce shortor long-lasting modifications in spinal nociception. Here we have identified a robust long-term depression (LTD) of synaptic transmission in substantia gelatinosa neurons that can be induced by low-frequency stimulation of primary afferent Adfibers. Synaptic transmission between dorsal root afferents and neurons in the substantia gelati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 124  شماره 

صفحات  -

تاریخ انتشار 1986